Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4,6,7,9,10,12-Hexahydro-1,3-dithiolo-[4,5-f][1,4,9]oxadithiacycloundecine-2-thione

Rui-Bin Hou,^a Bao Li,^b Bing-Zhu Yin^a* and Li-Xin Wu^b

^aKey Laboratory of Organism Functional Factors of Changbai Mountain, Yanbian University, Ministry of Education, Yanji 133002, People's Republic of China, and ^bState Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China Correspondence e-mail: zqcong@ybu.edu.cn

Received 10 June 2009; accepted 23 June 2009

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.003 Å; R factor = 0.031; wR factor = 0.106; data-to-parameter ratio = 20.7.

In the title molecule, $C_9H_{12}S_5O$, the five-membered ring and attached S atom are essentially coplanar [mean deviation from the mean plane = 0.020(1) Å]. The two S atoms belonging to the macrocycle deviate from this plane by 1.005 (1) and 1.337 (2) Å. In the crystal, $\pi - \pi$ interactions link the molecules into centrosymmetric dimers with a short distance of 3.753 (5) A between the centroids of the five-membered rings.

Related literature

The title compound was prepared according to Chen et al. (2005). For background literature concerning crown-etherannulated 1,3-dithiol-2-thione derivatives, see: Hansen et al. (1992); Trippé et al. (2002).

Experimental

Crystal data

Α

$C_9H_{12}OS_5$	$\gamma = 112.74 \ (3)^{\circ}$
$M_r = 296.49$	V = 622.2 (2) Å ³
Triclinic, P1	Z = 2
a = 8.3425 (17) Å	Mo $K\alpha$ radiation
b = 8.9611 (18) Å	$\mu = 0.90 \text{ mm}^{-1}$
c = 9.820 (2) Å	$T = 291 { m K}$
$\alpha = 98.10 \ (3)^{\circ}$	$0.15 \times 0.12 \times 0.12$ mm
$\beta = 106.58 \ (3)^{\circ}$	

Data collection

Rigaku R-AXIS RAPID	6141 measured reflections
diffractometer	2813 independent reflections
Absorption correction: multi-scan	2560 reflections with $I > 2\sigma($
(ABSCOR; Higashi, 1995)	$R_{\rm int} = 0.017$
$T_{\min} = 0.877, \ T_{\max} = 0.900$	
Refinement	

$wR(F^2) = 0.106$ H-atom parameters constrained	ned
$S = 1.06 \qquad \qquad \Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$	
2813 reflections $\Delta \rho_{\min} = -0.36 \text{ e} \text{ Å}^{-3}$	

 $2\sigma(I)$

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20662010), the Specialized Research Fund for the Doctoral Program of Higher Education (grant No. 2006184001) and the Open Project of the State Key Laboratory of Supramolecular Structure and Materials, Jilin University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2573).

References

- Chen, T., Liu, W. J., Cong, Z. Q. & Yin, B. Z. (2005). Chin. J. Org. Chem. 25, 570-575.
- Hansen, T. K., Jørgensen, T., Stein, P. C. & Becher, J. (1992). J. Org. Chem. 57, 6403-6409.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Trippé, G., Levillain, E., Le Derf, F., Gorgues, A., Sallé, M., Jeppesen, J. O., Nielsen, K. & Becher, J. (2002). Org. Lett. 4, 2461-2464.

supplementary materials

Acta Cryst. (2009). E65, o1710 [doi:10.1107/S1600536809024003]

4,6,7,9,10,12-Hexahydro-1,3-dithiolo[4,5-f][1,4,9]oxadithiacycloundecine-2-thione

R.-B. Hou, B. Li, B.-Z. Yin and L.-X. Wu

Comment

Crown ether annulated 1,3-dithiol-2-thione derivatives have been intensively investigated as key intermediate of the crowned tetrathiafulvalenes because the latter molecules show electrochemical signaling for various metal cations (Hansen *et al.*,1992; Trippé *et al.*, 2002). We report hererin the crystal structure of the title compound, (I).

In (I) (Fig. 1), five-membered ring and attached S2 atom are essentially coplanar with the mean deviation of 0.020 (1) Å from the mean plane *P*. The plane defined by the rest non-hydrogen atoms forms an angle of 70.25 (4) ° with *P*. The π - π interactions with the short distance of 3.753 (5) Å between the centroids of five-membered rings link the molecules into centrosymmetric dimers.

Experimental

The title compound was prepared according to the literature (Chen *et al.*, 2005). Single crystals suitable for X-ray diffraction were prepared by slow evaporation a mixture of dichloromethane and petroleum at room temperatue.

Refinement

Carbon-bound H-atoms were placed in calculated positions with C—H 0.97 Å and were included in the refinement in the riding model, with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I) showing the atom numbering. Displacement ellipsoids of non-H atoms are drawn at the 30% probability level.

4,6,7,9,10,12-Hexahydro-1,3- dithiolo[4,5-f][1,4,9]oxadithiacycloundecine-2-thione

Crystal data	
C ₉ H ₁₂ OS ₅	Z = 2
$M_r = 296.49$	$F_{000} = 308$
Triclinic, PT	$D_{\rm x} = 1.583 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å

supplementary materials

a = 8.3425 (17) Å
<i>b</i> = 8.9611 (18) Å
c = 9.820(2) Å
$\alpha = 98.10 \ (3)^{\circ}$
$\beta = 106.58 \ (3)^{\circ}$
$\gamma = 112.74 (3)^{\circ}$
$V = 622.2 (2) \text{ Å}^3$

Da

Data collection	
Rigaku R-AXIS RAPID diffractometer	2813 independent reflections
Radiation source: fine-focus sealed tube	2560 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.017$
T = 291 K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 3.4^{\circ}$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$h = -10 \rightarrow 10$
$T_{\min} = 0.877, \ T_{\max} = 0.900$	$k = -11 \rightarrow 11$
6141 measured reflections	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.031$	H-atom parameters constrained
$wR(F^2) = 0.106$	$w = 1/[\sigma^2(F_o^2) + (0.0645P)^2 + 0.2783P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\rm max} = 0.003$
2813 reflections	$\Delta \rho_{max} = 0.41 \text{ e} \text{\AA}^{-3}$
136 parameters	$\Delta \rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Experimental. (See detailed section in the paper)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Cell parameters from 5678 reflections $\theta = 3.4 - 27.0^{\circ}$ $\mu = 0.90 \text{ mm}^{-1}$ T = 291 KBlock, yellow $0.15\times0.12\times0.12~mm$

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
C1	0.3295 (3)	0.6916 (3)	0.4927 (2)	0.0376 (4)
C2	0.2130 (3)	0.8764 (2)	0.3463 (2)	0.0300 (4)
C3	0.1113 (3)	0.9792 (2)	0.3073 (2)	0.0354 (4)
H3A	0.1194	1.0051	0.2161	0.042*
H3B	0.1724	1.0851	0.3848	0.042*
C4	-0.2203 (3)	0.6799 (3)	0.1413 (3)	0.0408 (5)
H4A	-0.1445	0.6233	0.1746	0.049*
H4B	-0.3469	0.6075	0.1315	0.049*
C5	-0.2231 (3)	0.6956 (3)	-0.0092 (3)	0.0486 (5)
H5A	-0.2975	0.5852	-0.0811	0.058*
H5B	-0.2805	0.7677	-0.0378	0.058*
C6	-0.0193 (3)	0.6766 (3)	-0.1285 (3)	0.0466 (5)
H6A	-0.1108	0.6664	-0.2208	0.056*
H6B	-0.0423	0.5639	-0.1211	0.056*
C7	0.1742 (3)	0.7686 (3)	-0.1276 (2)	0.0439 (5)
H7A	0.1991	0.8846	-0.1229	0.053*
H7B	0.1754	0.7190	-0.2215	0.053*
C8	0.4004 (3)	0.9279 (2)	0.1782 (2)	0.0367 (4)
H8A	0.5328	1.0056	0.2243	0.044*
H8B	0.3342	0.9920	0.1443	0.044*
C9	0.3363 (2)	0.8552 (2)	0.2922 (2)	0.0294 (4)
01	-0.0377 (2)	0.7650 (2)	-0.0088 (2)	0.0600 (5)
S1	0.43959 (7)	0.73453 (6)	0.36855 (5)	0.03533 (15)
S2	0.36763 (14)	0.58331 (12)	0.60929 (8)	0.0708 (3)
S3	0.17163 (8)	0.77394 (7)	0.48048 (6)	0.03867 (15)
S4	-0.13328 (7)	0.87314 (7)	0.28369 (6)	0.04162 (16)
S5	0.36387 (8)	0.77082 (7)	0.01819 (6)	0.04019 (15)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0448 (11)	0.0454 (11)	0.0277 (9)	0.0247 (9)	0.0138 (8)	0.0110 (8)
C2	0.0293 (8)	0.0333 (9)	0.0239 (8)	0.0121 (7)	0.0089 (7)	0.0061 (7)
C3	0.0375 (10)	0.0361 (9)	0.0347 (10)	0.0190 (8)	0.0136 (8)	0.0087 (8)
C4	0.0313 (9)	0.0420 (10)	0.0486 (12)	0.0163 (8)	0.0140 (9)	0.0140 (9)
C5	0.0318 (10)	0.0615 (14)	0.0431 (12)	0.0164 (10)	0.0121 (9)	0.0057 (10)
C6	0.0439 (11)	0.0526 (12)	0.0361 (11)	0.0199 (10)	0.0127 (9)	0.0023 (9)
C7	0.0506 (12)	0.0565 (13)	0.0329 (10)	0.0266 (10)	0.0214 (9)	0.0172 (9)
C8	0.0388 (10)	0.0339 (9)	0.0361 (10)	0.0107 (8)	0.0200 (8)	0.0097 (8)
C9	0.0283 (8)	0.0289 (8)	0.0276 (9)	0.0101 (7)	0.0105 (7)	0.0059 (7)
O1	0.0356 (8)	0.0692 (11)	0.0481 (10)	0.0048 (8)	0.0198 (7)	-0.0146 (8)
S1	0.0340 (3)	0.0422 (3)	0.0348 (3)	0.0204 (2)	0.0152 (2)	0.0112 (2)
S2	0.1147 (7)	0.0990 (6)	0.0578 (4)	0.0820 (6)	0.0517 (4)	0.0521 (4)
S3	0.0443 (3)	0.0543 (3)	0.0322 (3)	0.0285 (2)	0.0224 (2)	0.0188 (2)

supplementary materials

S4	0.0399 (3)	0.0544 (3)	0.0438 (3)	0.0303 (2)	0.0214 (2)	0.0135 (2)	
85	0.0468 (3)	0.0511 (3)	0.0357 (3)	0.0300 (2)	0.0217(2)	0.0135 (2)	
Geometric param	neters (Å, °)						
C1—82		1 642 (2)	C5—H4	54	0.9	700	
C1 = S1		1.012 (2)	C5—H	5R	0.9	700	
C1 = S3		1.726 (2)	C6-0		1.4	1.402 (3)	
C2-C9		1 346 (3)	C6—C	7	1.4	99 (3)	
C2—C3		1.495 (3)	С6—Н(5A	0.9700		
C2—S3		1.7471 (19)	C6—He	6B	0.9	0.9700	
C3—S4		1.814 (2)	C7—S5	;	1.796 (2)		
С3—НЗА		0.9700	С7—Н	7A	0.9700		
С3—Н3В		0.9700	С7—Н	7B	0.9	700	
C4—C5		1.498 (3)	C8—C9)	1.497 (3)		
C4—S4		1.802 (2)	C8—S5	;	1.8	20 (2)	
C4—H4A		0.9700	C8—H8	3A	0.9700		
C4—H4B		0.9700	C8—H8	3B	0.9700		
C5—O1		1.426 (3)	C9—S1		1.747 (2)		
S2—C1—S1		124.30 (13)	O1—C6	6—H6A	109	0.7	
S2—C1—S3		123.21 (13)	С7—Се	6—H6A	109	109.7	
S1—C1—S3		112.49 (12)	01—Ce	6—H6B	109	0.7	
С9—С2—С3		127.67 (18)	С7—Се	б—Н6В	109	.7	
C9—C2—S3		115.53 (15)	Н6А—	С6—Н6В	108	3.2	
C3—C2—S3		116.79 (14)	C6—C7	7—S5	117	.34 (17)	
C2—C3—S4		112.96 (14)	C6—C7	7—H7A	108.0		
С2—С3—НЗА		109.0	S5—C7	—Н7А	108.0		
S4—C3—H3A		109.0	C6—C7	С6—С7—Н7В		108.0	
С2—С3—Н3В		109.0	S5—C7	S5—C7—H7B		3.0	
S4—C3—H3B		109.0	H7A—4	H7A—C7—H7B		.2	
НЗА—СЗ—НЗВ		107.8	C9—C8	C9—C8—S5		.07 (14)	
C5—C4—S4		116.74 (17)	C9—C8	3—H8A	108	5.7	
C5—C4—H4A		108.1	S5—C8	H8A	108	5.7	
S4—C4—H4A		108.1	C9—C8	3—H8B	108	5.7	
C5—C4—H4B		108.1	S5—C8		108	5.7	
S4—C4—H4B		108.1	H8A—4	С8—Н8В	107	.6	
H4A—C4—H4B		107.3	C2—C9	9—С8	127	.63 (18)	
O1—C5—C4		110.55 (19)	C2—C9	9—S1	116	.14 (15)	
O1—C5—H5A		109.5	C8—C9	9—S1	116	.20 (14)	
C4—C5—H5A		109.5	C6—O	l—C5	113	.57 (18)	
O1—C5—H5B		109.5	C1—S1	—С9	97.	73 (10)	
C4—C5—H5B		109.5	C1—S3	-C2	98.	01 (10)	
H5A—C5—H5B		108.1	C4—S4	—C3	102	2.59 (10)	
O1—C6—C7		109.68 (19)	C7—S5	—С8	103	.70 (11)	

